1. [25pts] Let $f(x, y)=\ln \left(x-y^{2}\right)$.
(a) Find the domain and range of $f(x, y)$.

Since the domain of $\ln (t)$ is all values of $t>0$, we have:

$$
\begin{aligned}
\text { Domain } & =\left\{(x, y) \in \mathbb{R}^{2}: x-y^{2}>0\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2}: x>y^{2}\right\}
\end{aligned}
$$

While it wasn't necessary to sketch the domain in the $x y$-plane, here is a diagram showing the region. Note, the domain is shaded in blue, with an open (dashed) boundary, since \ln is undefined for zero.

For the range, note that when $y=0$, we have $f(x, 0)=\ln (x)$, and since $(x, 0)$ is in our domain for all positive values of x, we must have that the
range of $f(x, y)$ is the same as the range of $\ln (x)$. That is:

$$
\text { Range }=\{c \in \mathbb{R}:-\infty<c<\infty\}
$$

i.e. the interval $(-\infty, \infty)$.
(b) Determine the equations of the level curves $f(x, y)=c$ together with possible values of c.

The possible values of c are exactly the values in the range. Hence $-\infty<$ $c<\infty$. Setting $f(x, y)=c$ gives us:

$$
\begin{aligned}
\ln \left(x-y^{2}\right) & =c \\
x-y^{2} & =e^{c} \\
x & =y^{2}+e^{c}
\end{aligned}
$$

Since $0<e^{c}<\infty$ for $-\infty<c<\infty$, then the level curves are exactly copies of the (sideways) parabola $x=y^{2}$, shifted to the right by the positive value e^{c}.
(c) Find a unit vector \vec{u} which is perpendicular to the level curve of $f(x, y)$ passing through the point $(4,1)$.

The gradient vector $\nabla f\left(x_{0}, y_{0}\right)$ will always be perpendicular to the level curve that passes through the point $\left(x_{0}, y_{0}\right)$:

$$
\begin{aligned}
\nabla f(4,1) & =\left.\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)\right|_{(4,1)} \\
& =\left.\left(\frac{1}{x-y^{2}}, \frac{-2 y}{x-y^{2}}\right)\right|_{(4,1)} \\
& =(1 / 3,-2 / 3)
\end{aligned}
$$

Hence a unit vector in the same direction as $\nabla f(x, y)$ will also be perpendicular to the level curve through $(4,1)$:

$$
\begin{aligned}
\vec{u} & =\frac{\nabla f(4,1)}{\|\nabla f(4,1)\|} \\
& =\frac{3}{\sqrt{5}}(1 / 3,-2 / 3)=\frac{1}{\sqrt{5}}(1,-2)
\end{aligned}
$$

2. [20 points] Let $f(x, y)=e^{x^{2}} \sin (x y)$ be a function of two variables.
(a) Find the linearization of $f(x, y)$ at the point $(1,0)$.

$$
\begin{aligned}
f(1,0) & =0 \\
\left.\frac{\partial f}{\partial x}\right|_{(1,0)} & =2 x e^{x^{2}} \sin (x y)+\left.e^{x^{2}} y \cos (x y)\right|_{(1,0)} \\
& =\left.e^{x^{2}}(2 x \sin (x y)+y \cos (x y))\right|_{(1,0)} \\
& =0 \\
\left.\frac{\partial f}{\partial y}\right|_{(1,0)} & =\left.x e^{x^{2}} \cos (x y)\right|_{(1,0)} \\
& =e
\end{aligned}
$$

Hence the linearization of $f(x, y)$ at $(1,0)$ is:

$$
\begin{aligned}
L(x, y) & =f(1,0)+\left.\frac{\partial f}{\partial x}\right|_{(1,0)}(x-1)+\left.\frac{\partial f}{\partial y}\right|_{(1,0)}(y-0) \\
& =0+(0)(x-1)+(e)(y-0) \\
& =e y
\end{aligned}
$$

(b) Use your answer in part (a) to approximate $f(1.1,-0.05)$.

$$
\begin{aligned}
f(1.1,-0.05) & \approx L(1.1,-0.05) \\
& =-0.05 e,
\end{aligned}
$$

which is about $2.718 \times-0.05=-0.1359$. (The actual value is $-0.18434868 \ldots$...
3. [15 points] Let $w=\sin (f(x, y))$ be a function of x, y and $x=u(t), y=v(t)$ be functions of t. Find $\frac{d w}{d t}$ in terms of $f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, u, v, u^{\prime}, v^{\prime}$.

$$
\begin{aligned}
\frac{d w}{d t} & =\frac{d}{d t} \sin (f(u(t), v(t))) \\
& =\cos (f(u(t), v(t))) \frac{d}{d t} f(u(t), v(t)) \\
& =\cos (f(u(t), v(t)))\left(\left.\frac{\partial f}{\partial x}\right|_{(u(t), v(t))} \frac{d x}{d t}+\left.\frac{\partial f}{\partial y}\right|_{(u(t), v(t))} \frac{d y}{d t}\right) \\
& =(\cos (f(u(t), v(t))))\left(\frac{\partial f}{\partial x}(u(t), v(t)) u^{\prime}(t)+\frac{\partial f}{\partial y}(u(t), v(t)) v^{\prime}(t)\right)
\end{aligned}
$$

4. [20 points] Find absolute minimum and maximum of the

 function $f(x, y)=12 x y-4 x^{2} y-3 x y^{2}$ on the triangle bounded by the x-axis, y-axis and the line $4 x+3 y=12$.i.

$$
\begin{aligned}
\nabla f(x, y) & =\left(12 y-8 x y-3 y^{2}, 12 x-4 x^{2}-6 x y\right) \\
& =(y(12-8 x-3 y), x(12-4 x-6 y))
\end{aligned}
$$

Setting $\nabla f(x, y)=(0,0)$ gives us

$$
\begin{aligned}
& y(12-8 x-3 y)=0 \\
& x(12-4 x-6 y)=0 .
\end{aligned}
$$

The first equation gives us $y=0$ or $12-8 x-3 y=0$. Letting $y=0$, and substituting into the second equation gives us

$$
\begin{array}{r}
x(12-4 x-3(0))=0 \\
\Longrightarrow 4 x(3-x)=0 \\
\Longrightarrow x=0 \text { or } x=3 .
\end{array}
$$

Hence $(0,0)$ and $(3,0)$ are two critical points (and candidates for minima/maxima).
Letting $12-8 x-3 y=0$ gives us $y=4-\frac{8}{3} x$. Substituting into the second equation gives us

$$
\begin{aligned}
& x(12-\left.4 x-6\left(4-\frac{8}{3} x\right)\right) \\
& \Longrightarrow=0 \\
& \Longrightarrow 12 x(x-1)=0 \\
& \Longrightarrow x=0 \text { or } x=1 \\
& \Longrightarrow y=4 \text { or } y=\frac{4}{3} .
\end{aligned}
$$

Hence $(0,4)$ and ($1, \frac{4}{3}$) are two critical points (and candidates for maxima/minima).
ii. Along the x-axis we have $f(x, y)=f(x, 0)$, with

$$
\begin{aligned}
f(x, 0) & =12 x(0)-4 x^{2}(0)-3 x(0)^{2} \\
& =0 .
\end{aligned}
$$

Hence $\frac{d}{d x} f(x, 0)=0$ everywhere along the x-axis, and so all points $(x, 0)$ are critical points along the boundary (and candidates for maxima/minima).

Along the y-axis we have $f(x, y)=f(0, y)$, with

$$
\begin{aligned}
f(0, y) & =12(0) y-4(0)^{2} y-3(0) y^{2} \\
& =0 .
\end{aligned}
$$

Hence $\frac{d}{d y} f(0, y)=0$ everywhere along the y-axis, and so all points $(0, y)$ are critical points along the boundary (and candidates for maxima/minima).

Along the line $4 x+3 y=12$ we have $y=4-\frac{4}{3} x$, and $f(x, y)=f\left(x, 4-\frac{4}{3} x\right)$, with

$$
\begin{aligned}
f\left(x, 4-\frac{4}{3} x\right) & =12 x\left(4-\frac{4}{3} x\right)-4 x^{2}\left(4-\frac{4}{3} x\right)-3 x\left(4-\frac{4}{3} x\right)^{2} \\
& =0 .
\end{aligned}
$$

Hence $\frac{d}{d x} f\left(x, 4-\frac{4}{3} x\right)=0$ everywhere along the line $4 x+3 y=12$, and so all points ($x, 4-\frac{4}{3} x$) are critical points along the boundary (and candidates for maxima/minima).
iii. Finally, we must test all the critical points both in the domain and along the boundary:

$$
\begin{aligned}
f(0,0) & =0 \\
f(3,0) & =0 \\
f(0,4) & =0 \\
f\left(1, \frac{4}{3}\right) & =\frac{16}{3} \\
f(x, 0) & =0 \\
f(0, y) & =0 \\
f\left(x, 4-\frac{4}{3} x\right) & =0
\end{aligned}
$$

Hence there is an absolute maximum of $\frac{16}{3}$ at the point ($1, \frac{4}{3}$), and an absolute minimum of 0 along the entire boundary.
5. [20 points] Given the system

$$
\begin{aligned}
& \frac{d x}{d t}=2 x+y \\
& \frac{d y}{d t}=2 y
\end{aligned}
$$

(a) Write the system in the matrix form $\frac{d \vec{x}}{d t}=A \vec{x}(t)$ Find all eigenvalues and corresponding eigenvectors of A.

$$
\begin{gathered}
{\left[\begin{array}{l}
\frac{d x}{d t} \\
\frac{d y}{d t}
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
2-\lambda & 1 \\
0 & 2-\lambda
\end{array}\right]=(2-\lambda)^{2}=0
\end{gathered}
$$

Hence $\lambda=2$ is the only eigenvalue of A. To find the corresponding eigenvector,

$$
\begin{aligned}
{\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] } & =2\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \\
\Longrightarrow 2 u_{1}+u_{2} & =2 u_{1} \\
\Longrightarrow u_{2} & =0 .
\end{aligned}
$$

Hence $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is an eigenvector corresponding to the eigenvalue 2.
(b) Show that $\vec{x}(t)=e^{2 t}\left[\begin{array}{l}0 \\ 1\end{array}\right]+t e^{2 t}\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is solution of the system.

$$
e^{2 t}\left[\begin{array}{l}
0 \\
1
\end{array}\right]+t e^{2 t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
t e^{2 t} \\
e^{2 t}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\frac{d \vec{x}}{d t}=\left[\begin{array}{c}
\frac{d x_{1}}{d t} \\
\frac{d x_{2}}{d t}
\end{array}\right] & =\left[\begin{array}{c}
e^{2 t}+t\left(2 e^{2 t}\right) \\
2 e^{2 t}
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{c}
t e^{2 t} \\
e^{2 t}
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right] .
\end{aligned}
$$

Hence this is indeed a solution of the (matrix) differential equation.

